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1. SUMMARY

This paper describes a system for the automatically learned invariant over a wide range of viewpoints of some
partitioning of "visual patterns" in digital images, based on a corresponding three-dimensional structure. This means that it
sophisticated, band-pass, filtering operation, with fixed scale is useless to look for features with particular sizes or
and orientation sensitivity. The "visual patterns" are defined orientations or other properties that are highly dependent upon
as the features which have the highest degree of alignment in viewpoint. The second constraint on these indexing features is
the statistical structure across different frequency bands. Here that there must be some way to distinguish the relevant
we show a computational visual distinctness measure features from the dense background of other image features
computed from the image representational model based on which could potentially give rise to false instances of the
visual patterns. It is applied to quantify the visual distinctness structures.
of targets in complex natural scenes. We also investigate the Often implicit in the interpretation of visual search tasks is the
relation between the computational distinctness measure and assumption that the detection of targets is determined by the
the visual target distinctness measured by human observers, feature-coding properties of low-level visual processing [6].

Instead of assuming that perceived shapes are simple or
2. INTRODUCTION statistical structure at a particular scale, we think it more

Images issued from the environment should not be presumed appropriate to regard them as "visual patterns", distinguished

to be random patterns. Instead, real-world images contain at an object level.

characteristic statistical regularities that set them apart from Here we show a particular scheme for filtering observed

purely random images. There are a number of statistical images, designed to the automatically learned partitioning of

properties that we might consider when looking at real-world features (visual patterns) which have the highest degree of

images, and many of the important forms of structure that are alignment in statistical structure across different frequency

contained in 2D images require higher-order statistics bands. These features are likely to be invariant over a range of

characterization. Moreover, Field [1] noted that there is scales and orientations and can be judged unlikely to be

likely to be a variety of features which extend across different accidental in origin even in the absence of specific information

frequency bands. For instance, the presence of edges and lines regarding which objects may be present. Then, we present a

in an image corresponds to a type of congruence between the computational visual distinctness measure computed from the

different scales of the image which is destroyed when the image representational model based on visual patterns. This

phases are randomized [2]. These features exist because some measure applies a simple decision rule to the distances

degree of alignment exists between the phases at different between segregated visual patterns, and it will be used to

frequencies. There are also other forms of congruence across quantify the visual distinctness of targets in complex natural

scales in 2D digital images. Field [3] suggested that the scenes. The analysis to the automatically learned partitioning
of "visual patterns" (it has been termed RGFF model) followspower spectra of natural images falls off as a function of

frequency by a factor of approximately I/k 2. This implies that three stages: Preattentive stage, Integration stage, and

the image will have constant variance across scales: the Learning stage. Fig. I shows a general diagram describing
how the data flows through the RGFF model. This diagram

contrast as measured by the variance in pixel intensities should iua the analyss ongi iae of a m li vhi cle
reman rughy cnstntindeendntl ofthevieingillustrates the analysis on a given image of a military vehicleremain roughly constant, independently of the viewing

distance.The perceptual organization capabilities of human in a complex rural background.

vision seem to exhibit the properties of detecting viewpoint- In the preattentive stage of the RGFF system (Section 3), the

invariant structures and calculating varying degrees of clumps of energy in the Fourier spectrum of the image are

significance for individual instances [4]. Lowe [5] proposed captured into a collection of oriented spatial-frequency

that the structures to be detected in the image should be channels, as illustrated in Fig. 1. The segregation of these

formed bottom-up using perceptual grouping operations that clumps of energy induces the selection of a subset of

exhibit exactly these properties in the absence of domain activated filters (which are selectively sensitive to them) from
a filter bank of log-Gabor functions centered at 12 orientationsk n o w led g e, y et m u st b e o f su fficien t sp ecifi city to serv e asan 5 r ng s D u to c j g te y m t y , h e f l r d si n s

indexing terms into a database of objects. Given that we often and 5 ranges. Due to conjugate symmetry, the filter design ishave no priori knowledge of viewpoint for the objects in a only carried out on half the 2D frequency plane. The activated
dabave, n these indexing features that are detected in the image log-Gabor filters produced by the preattentive stage are
database, ths neigfaue htaedtce nteiae illustrated in the diagram by ellipses drawn, in the 2D spatial-
must reflect properties of the objects that are at least partially

Paper presented at the RTO SCI Workshop on "Search and Target Acquisition", held in Utrecht,
The Netherlands, 21-23 June 1999, and published in RTO MP-45.
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INPUT IMAGE A pcontrary, both large structures and fine detail of the natural
background were removed, even though significant

background clutter that can affect the target distinctness is still
present. In fact. the fine details of the natural background,

S. "which are not significant for quantifying the target
distinctness, are isolated in the output from detector #1. And
the lower frequency texture of the background is segregated

#9 into the output from detector #3. Fig. 2 demonstrates the
Acti,'Wd Films ability of the same model to achieve signal separation from

superposition of objects on three synthetic images. The image
in Fig. 2.A I was partitioned into two "visual patterns", as
shown in Figs. 2.C I and 2.E 1. In the learning stage, the set of

TBakoi.ogGbo•b activated filters was partitioned into two groupings of filters,

as shown in Figs. 2.B13 and 2.1)1. The "visual pattern" shown
in Fig. 2.C I (respectively, Fig. 2.1Fl) was obtained by the sum

0-wHgin Acr, of the responses over filters in Fig. 2.B1 (resp., Fig. 2.1)1).
The "visual patterns" obtained by the model on Fig. 2.A2, are
illustrated in Figs. 2.C2 and 2.1`2. The learning stage produced

S,' h I,' c ., ..... . two collections of filters as shown in Figs. 2.132 and 2.D2.

, . ,The right column in Fig. 2 shows the signal separation
achieved by the analysis on the input image given in Fig.

..-. 2.A3.

1 Distance(q., . 7 ~.,-- Finally. Section 6 presents the computational visual
lit ' isaceO ~'• :, -r distinctness measure computed fioii the image

"representational model based on visual patterns. As illustrated
s,-,, 2 in Fig. 10. this measure applies a simple decision rule to the

distances between segregated visual patterns.

Natural Clusters

3. PREATTENTIVE STAGE

In the RGFF model, the encoding strategy will rely on the
combined activity of subsets of filters. Only a small number of
units will contribute to the detection of cach visual pattern.
These collections of filters will be derived from a learning

, stage. based on the degree of congruence between the
responses of strongly responding filters that a preattentive

stage produces. There are two basic assumptions for this first
stage:

1. Spatial information on the image is analyzed by multiple
filters, each of which is sensitive to patterns whose spatial
frequencies are in a particular range.
2. The RGFF model bases its responses only on those
filters sensitive to relevant forms in the complex scene.

Vi.ual 'atterns These assumptions are in agreement with models of spatial-
frequency channels which are quite successful for the

Figore 1. A general diagram describing how the data flows detection of visual patterns [7]. The output of the preattentive
through the representational model.. stage will be the units from a fixed filter bank of log-Gabors

which are tuned to the clumps of energy in the Fourier
spectrum of the given image. The selected units are the filters

frequency plane, at the point where their amplitude has in the bank which strongly respond to sonic pattern that the
decreased to the (c"'12) half width its maximui. image contains. These filters are referred as the "activated"
In the integration stage (Section 4), for any two activated filters of the bank. Also for each activated filter, pixels
filters, their responses are compared based on the distance (a whereupon the focus of attention should be shifted to measure
13-norni between their statistical structure, computed over congruence and which form "fixation points", are computed as
those pixels which form "fixation points" of the filters (local local energy peaks on the filtered response. This processing is
energy peaks on the filtered response). based on current models of human visual search and detection
In the learning stage (Section 5), clustering on the basis oftthe which assume that a preattentive stage indicates potentially
distance between the activated filters is perforiied to highlight interesting image regions. anid where a serial stage is
scale and orientation invariance of responses. deployed to analyze them in detail [6.7].
As shown in Fig. 1, three collections of filters were obtained
in the Learning stage for the input image in accordance with a 3.1. Bank of filters
constrainit of invariance in statistical structure across The set of filters used in the decomposition of the picture
frequency bands. The filtered responses of activated log- consists of log-Gabor filters of differenit spatial frequencies
Gabors in each one of the three groupings were summed for and orientations [3]. Log-Gaior functions, by definition, have
the automatic learned partitioning of the visual patterns. no DC component. The transfer function of the log-Gabor has
The performance of this notion of visual pattern to segregate extended tails at the high frequency end. Thus it should be
potential targets can be visually evaluated in Fig. I, at the able to encode natural ima
bottom. The dominant signal in the output from detector #2 is Gao fo repesent the ow-

the military vehicle (target) which is well preserved. On the
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E(x, y) = [o',n (x, y) + 0,2 (x, y) (2)

0 0where O.,,,(x,y) is the image convolved with the even-
symmetric log-Gabor filter and O,,IXx,y) is the image
convolved with the odd-symmetric log-Gabor filter.

# The real-valued function given in equation (1) can be

(Al) (A2) (A3) multiplied by the frequency representation of the image and
after transforming the result back to the spatial domain, the
results of applying the oriented energy filter pair are extracted
as simply the real component for the even-symmetric filter and

* •: , . .the imaginary component for the odd-symmetric filter [9]. The
. .. bank of the filters should be designed so that it tiles the

frequency plane uniformly (the transfer function should be a
L J. J perfect bandpass function). The length to width ratio of the

(B1) (B2) (B3) filters controls their directional selectivity. The ratio can be
varied in conjunction with the number of orientations used in
order to achieve a coverage of a 2D spectrum. Furthermore, as
the degree of blurring introduced by the filters increases with
their orientational selectivity, they must be carefully chosen
to minimize the blurring. Hence we consider a filter bank
with the following features:

1. The spatial frequency plane is divided into 12 different
(Cl) (C2) (C3) orientations.

2. The radial axis is divided into 5 equal octave bands. In a
band of width 1 octave, spatial frequency increases with a
factor 2. The highest filter (for each direction) is positioned

.. . . / near the Nyquist frequency to avoid ringing and noise.
,, The wavelength of the five filters in each direction is set at

3, 6, 12, 24, and 48 pixels, respectively.
3. The radial bandwidth is chosen as 1.2 octaves.

(Dl) (D2) (D3) 4. The angular bandwidth is chosen as 15 degrees.
Twelve different angles for each resolution are chosen and
five different resolutions are used. The resultant filter bank is
illustrated in Fig. 1. Due to conjugate symmetry, the filter
design is only carried out on half the 2D frequency plane. The
log-Gabor filters are illustrated in the diagram by ellipses
drawn, in the 2D spatial-frequency plane, at the point where
their amplitude has decreased to the (e-'2) half width its

(El) (EM) (EM maximum.

Figure 2: Automatically learned partitioning of "visual
patterns" in synthetic image data. 3.2. Activated filters in the bank

In order to decompose the image into its most significant
frequency components and under-represent the high frequency components, strongly responding filters should be selected for
components in any encoding process. Another argument in the input image.
support of the log-Gabor functions is the consistency with Let Active be the set of filters in the bank that strongly
measurements on the mammalian visual system [8]. respond to the spatial information content. They will be
A Log-Gabor filter determines a Gaussian in the spatial selectively sensitive to patterns in the scene. These patterns
frequency domain around some central frequency (r,,, 0,). It produce clumps of energy upon the Fourier spectrum of the
can be represented in the frequency domain as the sum of the image. The activated units from the bank are then simply
even-symmetric log-Gabor filter and i times the odd- those filters whose amplitude spectrum and some clump of
symmetric log-Gabor filter as follows: energy in the image amplitude spectrum overlap to some

extent, as illustrated in Fig. 1.
¢(rO,, =exp. (log( r/ro) .ex

- (log(xp r -t 
))2 (Q -0Q), 3.3. Selection of fixation points

2(log( rrr ep 20 (1) In the integration stage, for any given two activated filters, a
distance between them is derived via distances between their

statistics. The distance chosen is the [-norm, computed over
where 09Ais the orientation angle of the filter, ro, is the central those pixels which form "fixation points" of the filters. The
radial frequency, o- and o, are the angular and radial sigma of "fixation points" are simply local energy peaks on the filtered
the Gaussian, respectively. response. The standard argument for selecting regions of high
The convolution of a log-Gabor function (whose real and Gabor energy is that they would provide a good starting point
imaginary parts are in quadrature) with a real image results in for exploring common grounds between several activated
a complex image. Its norm is called energy and its argument is filters in the Gabor space. The implementation of the local-
called phase. The local energy of the image analyzed by a energy model used here is the one presented in [10]. Given
log-Gabor filter (hereafter, filtered response) can be expressed the original image, the local energy map Ej for the activated
as [3]: filter 0, given in equation (2), yields a representation in the
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space spanned by two functions, O,.,,,,(x,y) and Q ,,,x,v), distance between (xv) and the nearest local minimum to (x,y)
where O,,,(x,y) is the image convolved with the even- on the energy map E,. Since the nearest local minimnum to
symmetric log-Gabor filter and O,,0,(x,y) is the image (x, y) on the local energy map marks tile beginning of another
convolved with the odd-symmetric log-Gabor filter at (x,y). potential structure, our selection for the neighborhood W(x, y)
Hence, the detection of peaks on the E1 map acts as a detector avoids interference with such a structure while the local
of significant features oil the filtered response. variation is computed [10].

4. The local contrast of the normalized local energy defined
4. INTEGRATION STAGE as:

Given a decomposition of the original image into its most T4' (X, ) = (6)
significant components, only a further element is needed to ( 1
define the concept of visual pattern: a distance measure, where
denoted as Distance(Ai, qd, between the statistical structures 1 T,
of the filtered responses for each pair of filters 0, and A c'= Cad [(' (x.y)].),

(Section 4.2.). Then, Distance('I,0,/) returns a value of the
degree of congruence between statistical structure at different 5. The local entropy of the normalized local energy within
scales and orientations. W(x,v), noted as T'I(p,q).
There are two basic assumptions for measuring congruence
between two filtered responses in this second stage:
1. The similarity between two filtered responses can be Although we propose these five features, any, other intent to

measured by the Quick pooling of the differences between capture relevant characteristics ofthe scene, while stable for

their statistical structure. the representation of the image is also conceivable. Hereafter,

2. The measure of similarity is not simply computed globally an "integral feature" is defined as a particular subset of

over the entire filtered response, but semni-locally at locations separable features at a fixation point [12].

that are local energy peaks (fixation points). For representing the filtered responses of the input image,

Previously, it was demonstrated [I I] that a measure based on different definitions of integral feature can be given based on

these two assumptions produces a good predictor of target different subsets of separable features. Consequently, the

saliency for humans performing visual search and detection system should learn the best integral feature definition for the

tasks. input image in which to look for invariance across orientations
and scales. This point is analyzed in Section 6.4.

4.1. Definition of integral feature for the partitioning of
visual patterns 4.2. Congruence in integral features between two filtered

responses
For each activated filter ,, the respective filtered response rerpondef

may be represented by any subset of the following separable In order to define a distance betwoen the integral features Of

features: two filtered responses. we need to specify how the differences
1. The phase value defined as: in each separable feature are to be pooled into an overall

difference at fixation points.

(XIY) Let 0, and 0 be a pair of activated filters in Active. Let
T, (x,y) =arctan 0<o'(X'y) (3) T'(x,v)=( T': (pq))%,,A, with 1A EI,2,..5}, be the integral

feature at (x,y) computed on the filtered response of I, based
on a number of , separable features (Section 4.1.). In a

where 0,,,,,(x,y) is the image convolved with thle even-

symmetric log-Gabor filter of A,. and O,,0jxy) is the image similar way, let Tl(x,y) = (7()1, be the integral

convolved with the odd-symmetric log-Gabor filter of 0, at feature at (x,y) on the filtered response of A.
(xy) (Section 3.1.). We take D [T' (xv y), T'(x,v)] defining a distance measure
2. A normalized measure of local energy as given by: between integral features T'(x,v) and T'(x,v) as given by tile

equation:
T2'(x,y)- E,(x,y) (4)

/,cA,2,m, I E P(x,y) D['(xjv).7'' (x))]= d(77 (xv),77(xv)) (7)
S• " ~ ~~I faxg~r, " "

where E, (xy) denotes the local energy at (xv) for filter A, (see where normalization Max is defined as:
equation 2 for further details), and Active is tile set of
activated filters for the image. This definition of a normalized Max,, = max {d(T,(P.q). 17,:"(pq))I(Pq) 1lP(,)}
local energy incorporates lateral interactions among activated . . •. r<,,,p.
filters to account for between-filter masking.
3. The local standard deviation of the normalized local with FP(n) being the fixation points for the activated filter 0,
energy defined as: and Active being the set of activated filters; and where for

T,'(x,y) Card [W(x,y)], , (7' (p, q) - /) 2 (5) = we have: sin(7'(xv)-(xv)) (8)( ar,",( , o wL"' , l a(T,'t(x.v), t, x.Y))= arctlan...l, " ""

where cos(7l (x,) -77' (xv))

7',Card [ T '(p.q) and for IA.= 2,3,4,5:
Cardy)J, (XwAIp d(x' (y (x. y (9)

and T2 (p~q) as given in equation (4). The neighborhood The congruence in integral features between two filtered
W(x,y) is defined as the set of pixels contained in a disk of responses is computed by using Quick pooling [13]. It is the
radius r centered at (x,y). Let r be defined as the Euclidean most common model of integration over spatial extent, and is
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essentially the square root of the squares sum except that the.'•--;7. . .:
exponent is not restricted to the value of 2. The Quick pooling
can be viewed as a metric in a multidimensional space, and it
is sometimes known as Minkowski metric.
The distance between the filtered responses of q5, and 0q, which
provides a measure of the extent to which features extend
through frequency, is given by:

Distance (0j, ,O j )= Dist' [i, j]+ Dist 2 L, i] (10)

where: (Al)
Dist[p,q]=- 1-- YD[TP(x,y),T,,(x,y)]l) (11

Card[FP(p)]( ,.....rePP

with FP(p) being the set of fixation points for the activated
filter 0,; and where D[T (x,y), T"(xy)] is defined as given in
equation (7). c-•j ,..,

The default value of the exponent/3 in equation (11) is 3.
Graham [7] discussed at some length several interpretations
of the Quick pooling formula and the selection of the pooling
exponent. (B1) (B2)

5. LEARNING STAGE

Based on a measure of the extent to which features extend
through frequency, noted as Distance(4i,ýO), a "visual pattern"
is simply defined as congruence in statistical structure, as
measured by Distance, across a range of 2D spatial frequency
bands.
The individual filters spanning this particular range of bands
will determine a natural cluster of units, noted as C,,, in the set
of activated logGabors Active. By taking into account the (Cl) (C2)
statistical congruence across this range of frequency bands, a
pair of filters qi and 0 will belong to the same natural cluster
C,, if there exists certainly continuity (i.e., there exists
similarity in some statistics at the same spatial locations)
across the filtered responses for an intermediate sequence of .

filters, between q!i and 0, in C,,. 9
Therefore the definition of "visual pattern" induces a partition V

in Active into a number of natural clusters C1, C2 ... , CN such
that:

N

Active =UC , and Cp n C, =o, (M) (D2)n=, (12) •

with p#q,p,q=1,2,..,N

where, for each C,,, a pair of filters qb , 0 E C,, if there exists a
sequence of filters •,0, t•,, 2 . 0". in C,, such that

Distance ( " ) <- E (13)•
Distance (0,,, , 0 / ) c e,,
Distance (0 ý,, I )< •= ,k = 1,2,..., 1- 1

where c,, denotes the degree of statistical congruence
between a pair of filters in C,, and verifies that: (El1) (E2

Distance (Op, tb,) > -', (14) Figure 3.: Natural clusters of activated filters and the
V Op, , : OP E C,,tq E Active -C,, respective visual patterns.

The clustering of activated filters is performed as described in
Section 5.1. Figs. 3 and 4 illustrate the performance of the The visual patterns produced by the model on Fig. 4.A1
clustering on several images of a target in a complex rural (respectively, 4.A2) are illustrated in Figs. 4.C1, 4.El, and
T acgeindi. w4.GI (resp., Figs. 4.C2, 4.E2, and 4.G2). In both cases, thep iatternssh n in Figs. 3.C1 w paroned 3 . tclustering of activated filters produced three collections of
patterns shown in Figs. 3.CI and 3.EI. filters as shown in Fig. 4.
In the clustering process, the set of activated filters was
partitioned into two collections of filters, as shown in Figs.
3.B1 and 3.DI. The "visual pattern" shown in Fig. 3.C1 5.1. Clustering of activated filters
(respectively, Fig. 3.E1) was obtained by the sum of the We formulate the problem as the clustering of a dataset
responses over filters in Fig. 3.BI (resp., Fig. 3.DI). X=fi I 0 e Active} into a number N of natural clusters
The right column in Fig. 3 shows the separation achieved by '0, 4'1 ..... ."N-_ .We call clusters natural if the membership is
the analysis on the image in Fig. 3.A2. determined fairly well in a natural way by the data.
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This clustering is reduced to a sequence of stages of simpler
partitioning [14]. At each stage•, a subset VY of Xis divided
into only two classes (for j0, A"•' A):
1. a natural cluster4- which contains all the data points (filters)

in Xi which are assigned the same class of a seed point (filter)
seedj, with seedj being picked randomly from X', and
2. the data, y- , still not placed in any' existing cluster, noted

as 4,,-.... - . (Al) (A2)

The clarity of separation between clusters, as measured by a
dissimilarity function, will be the criterion by' which we derive
a natural cluster , at stagej. The dissimilarity' function is

defined in Section 5.1.1. The criterion by which we define a '. •" :? - . ;.
natural cluster at stagej is presented in Section 5.1.2. "' 'U

The dynamic process of clustering is stopped at stagej if the
class Aý- "j is the empty set. Otherwise, the process

progresses, and the subset X' / to be partitioned at the stage
j+ 1, it will be the one defined as Xj' =Xi-A- . Finally', the

natural clusters in Active verifying equations (12)-(14) are
induced as:

C,, ={, e Active ie,, c } with n = 1.2 ..., (15)

and where N denotes the number of clusters into which X={i
1 0, eActive] was partitioned, that is 4-, ..... . See Fig. I (Cl) (C2)

for further illustration of this analysis.

5.1.1. Dissimilarity function
Let X. be a subset of data not absorbed in any' of the existing
clusters 4, 4 at the stage] of the dynamic

processing; with X 0 being the given data set,
X°= X-{i 1q, EActive). Next we define a graph GRAPH'
(IV, U) corresponding to the data subset XV. and with U1 ID') (D2)
being the set of arcs u-(k,I) between pairs of points in X'. We
associate with each arc u eU ' a real number I(t)_-O, and if
u=(k,I), we shall also use the notation l.1 for 1('t). Let IA, be
the distance from k to I defined as:

l•. = Distance (O,, 1, ) (16)

where Distance(0,., 0/) measures the distance between the _____W4_4

filtered response of filters 0. and q1 as given in equation (10). (El) (E2)
The cost of a path is defined as the greatest distance
between two successive vertices on the path. Let 1(seedj,k) be
a set of arcs constituting a path between two points seed, and k
in X'. And let l(it) represent the cost of p(seedl, k) from seed,
to k defined as follows: "7%'.. ::

l()=nzax{l-(u) i uc('seek),) (17)

(F1) (F2)
Taking into account that two filters belong to the same cluster (,F

if there exists continuity (i.e., there exists similarity' in their
statistics at the same spatial locations) across the responses of
filters in a path between them, the dissimilarity function is
next defined as the cost of the optimum path from a seed
point to each other on the graph. The optimum path between
two data points seedi and k is the path /i*(seedl,k) from seed,
to k whose maximum cost I(p*) is minimum:

(GI) (G21

p *(seed , k) = Argmin [max {l(,,)I I e (seed,,k)A}] (18) Figure 4: Natural clusters of activated filters and
I' the respective visual patterns.
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Pd(%)
__ - Visual target distinctness .....

Imag9 R I RAISE vp.r

Value Rank Value Rank Value Rank 0.0 C2

#10 9639 1 2-55 4 4.799 1
#9 96.27 2 1.690 1 4.531 2 0.6

#37 96.19 3 16.12 2 3-B15 3 11

# U 90.95 4 1.94 7 3.637 4 0.4 C

# 30 90.66 5 2.37 5 2.713 6 C2=(6,371

# 126 .06 6 1.71 8 2.969 5 0.2 C3=(3[.21
,
11 J

#29 89.47 7 1.60 91 2.234

#3 80.02 8 2.83 3 2.254 o 0 20 00 40 60

# 21 73.84 9 1.35 10 2.046 10 Search Time(s)

# 11 73.40 10 1.96 I I[I 2.690 I7ili Figure 5: Cumulative distribution functions to the

I Po ___ __ 0.5 I 8 o7- 7 search times for the target scenes

Table 1: Comparative results of the RMSE metric and The approach is as follows. First, a psychophysical
the computational visual distinctness measure, experiment is performed in which observers estimate the

visual distinctness of the target in each of 44 different test
scenes (Section 6.2.). Second, a computational measure is

Hence, the dissimilarity from the viewpoint of seedi to each k, defined and then applied to quantify the visual distinctness of

is defined as the cost of the optimum path a*( seedrk) from the targets (Section 6.3.). Finally, an experiment is

seed1 to each k: performed to investigate the relation between the
computational distinctness measure and the visual target

d G R. I I'' (seed,1 k) =l(p*) =max{l(u)1u *(seed , ,k)J (19) distinctness measured by human observers (Section 6.4.).

6.1. Images
with p* being the optimum path between seed and k. The The images used in this study are slides made during the
optimal path algorithm is given in [14]. DISSTAF (Distributed Interactive Simulation, Search and

Target Acquisition Fidelity) field test, that was designed and
5.1.2. Clarity of separation at stage j organized by NVESD (Night Vision & Electro-optic Sensors

Here we introduce the criterion by which we define the natural Directorate, Ft. Belvoir, VA, USA) and that was held in May
cluster I at stagej. and June 1995 in Fort Hunter Liggett, California, USA

SGRAPH [15].These slides depict 44 different scenes.
The set {dG (seed1 , k ), with keXJ } is firstly ordered to Each scene represents a military vehicle in a complex rural
obtain a new function: background.The 9 different vehicles that are deployed as

search targets are respectively a BMP-1, a BTR-70, an
dj(i)=dGR..... (seed,,k,), suchthatdi (i)<d.(i+]) (20) HMMVV-Scout, a HMMVV-Tow, an MIA1, an M3-Bradley,
where di (i) denotes the cost of the optimum path from seed an M60, an Ml 13, and a T72. The visibility of the targets
to k i. varies throughout the entire stimulus set. This is mainly due to

Let si represent the degree of closeness that is required variations in the structure of the local background,
the viewing distance, the luminance distribution over the

between a pair of points that belong to the natural cluster of target support (shadows), the orientation of the targets, and
seedj , noted as I. Taking into account that di(i) measures the degree of occlusion of the targets by vegetation.

the closeness between seedj and k, with k, eX1 , we have that The images used in the computational experiments are

47 can be defined as: subsampled to 256x256 pixels. For each scene t, containing a
target (vehicle), a corresponding empty scene e was created

EJ = d1 (i*) (21) [6].The empty scene is everywhere equal to the target scene,
except at the location of the target, where the target support is
filled with the local background.This replacement is done by

with i* being the location of the first significant rise in the hand, using the rubber stamp tool in Photoshop 3.05.The result
value of dj(i) when i increases. The value of i* is computed is judged by eye and is accepted if the variation in the
as the first zero crossing of the second derivative of dt, as background over the target support area does not appear to
described in Appendix. have an appreciable contrast with the natural variation in the
A point ki from Xj is then assigned the same cluster of seed local background.
if the closeness between seedj and k1 is less than or equal to In the experiment here reported (Section 6.4), the digital

images were (see Figs. 6-9): (i) ten complex natural images

k, , if d, (i) :' 1; otherwise k, o containing a single target that correspond to the scenes 16, 9,
37, 6, 30, 26, 29, 3, 21, and 11, from the 44 slides made
during the DISSTAF field test; and (ii) the corresponding
empty images of the same rural backgrounds without target,

6. PREDICTING VISUAL TARGET DISTINCTNESS that were created using the rubber stamp tool in Photoshop

This section presents a computational visual distinctness 3.05.

measure computed from the image representational model For each target image, Figs. 6-9 illustrate the simple

based on visual patterns. thresholding of the visual pattern produced by the natural
cluster of filters in Active that segregates the military vehicle
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(target detector). Simple thresholding was applied to remove 16'
small response values which were present in tile output of the
target detector. In the same figures. it is also shown the visual
pattern's thresholding produced by the target detector when
it is applied on the respective image without target.
To produce the results shown in Figs. 6-9. the definition of
integral feature used for the partitioning of the visual patterns
in accord with a constraint of invariance
was as follows (Section 4.1):
* for the target scenes 30, 37, and 16. T (T1, T3, 7T5) W i. 4

* for 26 and 6, 7 = (T_);.
* for 9, T = (T, T,, T4) ;
• for 29, T (T, T1, T7:5
* for 3, T = (79);
• for 21, T = (T 4, T7)9 and
• for 11, T - (TI, T2.

Section 6.4 analyzes how the best definition of integral
feature for predicting visual target distinctness can be
estimated on a dataset of example.

6.2. Psychophysical target distinctness 9

A psychophysical experiment was performed in which 41
observers estimate the visual distinctness of the target.
Search times and cumulative detection probabilities were
measured for nine military targets in complex natural
backgrounds.A total of 64 civilian observers, aged between 18
and 45 years, participate in the visual search experiment.
The procedure of the search experiment is described in [6].
Search performance is usually expressed as the cumulative :
detection probability as function of time, and it can be , . , ' ,
approximated by [6]

{et 0<i} (22)
1-exp{(t-Q ,/p}t>_,,

where
* PjXt) is the fraction of correct detections at time t,
* to is the minimum time required to response, and
* p is a time constant.

Fig. 5 shows the cumulative distribution functions
corresponding to tile search times measured for the target 37
scenes used in the experiment here described. The overall
difference between two of these functions can be measured by
subtracting the area beneath their graphs. This operation
corresponds to a Kolmogorov-Smirnov (K-S) test. To compare
the relative distinctness of the targets in the different target
scenes the curves are rank-ordered according to the area
beneath their graphs. The resulting rank order for the target
scenes is listed in the column with the header Rp, in Table 1.
These rank orders are adopted as the reference standard for the
evaluation of the computational metric.
Targets that give rise to closely spaced cumulative detection
curves which are similar in accordance with a K-S test, have
similar visual distinctness. Fig. 5 shows that the target images
in the experiment are clustered into a number of sets of
targets with comparable visual distinctness: (16. 9, 37}. (6,
30, 26, 29), and (3, 21, 11 ). Consequently, rank order
permutations of elements of the same cluster are not very
significant, whereas rank order permutations of elements of
different clusters are therefore significant.

6.3. Computational Target Distinctness Figure 6. Target an(d emprv imaiocs. hoimlopc /lres-sholdi(w of the

Let C,, ={[,,, with n-1, 2 ... N, be the N natural clusters in visual patterns produced hy the tairget dletetector on them.
Active produced by the RGFF model for the target image
t(.x,y).
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6

30, :.29 -29

4 •' 4'444444<44

Figure 7: Target and empty scenes in the dataset, and the Figure 8: Target and empty scenes in the dataset, and the
simple thresholding of the visual patterns produced by the simple thresholding of the respective visual patterns by the
target detector when it is applied on them. Simple target detector.
thresholding was used to remove values which were present
in the output of the target detector.

Therefore t,, t2. t. tx represent a decomposition of the
reference target image t into the set of its most significant

Let t,, represent the visual pattern segregated on the reference visual pa tterns.

target image t(x,y) by pooling the responses of filters in the in order nsa
natual luser C =t,,j as ollws:In order to compensate for the effect of image-to-image

natural cluster C,, ={•,} as follows: variations on the overall image light level, contrast

normalization of each visual pattern is realized by dividing t,,

t= A,, (23) by the sum of all filtered responses in Active, plus a saturation
constant o-

t,, (25)
where A,,,, denotes the original image t(x,y) filtered through or + YJ AI
the logGabor t4,1 in C,, and passed through a non-linearity
of the form: where A, denotes the original image t(x,y) filtered through the

tanh(z,r) - exp{-zr} (24) logGabor O, in Active and passed through a non-linearity as
t + exp{-z7} given in equation (24).

Similarly passing the corresponding empty image e(x,y)
where r-is a gain term [16]. This nonlinearity enables the through the filters associated with each cluster C,, produced by
system to respond to local contrast over several log units of the model on the reference image t(x,y), results in a
illumination changes. decomposition of e in el, e2.. eN.
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Let d1.,(t,,, e,,) be the difference between the visual patterns t,,
and e, computed via the fl-norm between their statistical
structure over those pixels which form "fixation points" on t,,
[11]:

d r,, (t,,(,e,, )7= rd[ 1 
( ] 3 (26)

' CardtFPt,,]OIL yJ-71,T,

with FP(t,,) being the set of fixation points for t,,: and
D[7"(xy), T"(x,y)] defining a normalized distance measure
between the integral features T t"(x,y) and T""(x,y) computed
on t, and e, respectively. The default value of the exponent ,6
in Equation (26) is 3.
Based on a definition of "visual pattern" as congruence in T
across frequency bands, the differences between segregated
visual patterns, D,,dvI'(t,,,e,,) , n=l,2_.., AN, determine the
overall distinctness between the reference target image t and
the corresponding empty image e by using a simple decision
rule:

VP,, (t,e)= I D,, (27)
21

A schematic overview of the VPy distinctness measure is
given in Fig. 10.

6.4. Relation between the computational and

psychophysical target distinctness estimates

All the possible definitions of Twere considered by
recombining any subset of the next separable features:

* the phase TI,
* the local energy T'2,

* the standard deviation of the local energy T3 ,
* the local contrast of the local energy, T4. and
* the entropy of the local energy T5.

For each specific definition of integral feature, noted as T,
the notion of congruence in T across frequency bands was
used to decompose the images into its visual patterns.
The VP,1 measure was then applied to quantify the
visual distinctness of the targets. The subjective ranking 11
induced by the psychophysical target distinctness was the
reference rank order.
In order to study the efficacy of each definition T of integral
feature for predicting target distinctness in a complex natural
background, the fraction of correctly classified targets (with
respect to the reference rank order) by the VP7 measure was
computed on the dataset. Targets that give rise to closely
spaced cumulative detection curves which are similar in
accordance with a Kolmogorov-Smirnov test, have similar
visual distinctness (Section 6.2.). Hence, the fraction of
correct classification P(,(, was defined as:

SNumber of Correctly Classified Targets
Number of Targets

where rank order permutations of targets of the same cluster
are insignificant (i.e., they are correctly classified by the
metric), whereas rank order permutations of elements of
different clusters are significant (the targets are then
incorrectly classified).
The highest value of the fraction ofcorrectly classified targets Figure 9: Target and eipty imnages. Thresholding of the
(P(,(e0.8) is obtained by the VPy measure at
T=(T7, 72, T3, T4, T5). Hence, the best definition of integral visialpatteris produced hy the taret detector.
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Cnadg ........ Fdt2 which have the highest degree of alignment in statistical
structure across different frequency bands. The interesting
point is what kind of objects when imaged by cameras give
rise to the visual patterns that the RGFF model segregates.
They will be objects whose statistical structure across scales
and orientations can be distinguished fairly well from the rest

__"'[__in a natural way. This limitation of the approach comes from
"the following assumption made in the clustering scheme of the
Learning stage (Section[5]): the data set of activated filters has
several separable clusters (e.g., elongated and non-piecewise

4 .linear separable groupings of arbitrary shape, dense and sparse
natural clusters) and the membership is determined fairly well

-A in a natural way by the data. The clarity of separation between
clusters, as measured by a dissimilarity function, was the
criterion by which they were derived. This assumption was
needed to deal with several problems: (a) to overcome the
lack of knowledge about the number and size of the clusters
in the data, (b) to avoid the dependence of clustering on the
initial cluster distribution, and (c) to find elongated and non-
piecewise linear separable clusters, as well as to identify dense
and sparse ones. In any case, the existence of natural clusters
in the data is a very realistic assumption to many interesting
applications. For example, because of the differences between

Figure 10: Schematic overview of the computational the statistical structure across scales and orientations of
distinctness measure targets and rural background in the application described in

Section [6], the visual distinctness of a man-made object (a

feature for perceiving target distinctness on the dataset in this military vehicle) in a rural background can be determined in a

experiment, is T = (T1, T2, T3, T4, T5). natural way by the data.

The comparative results of the RMSE metric and the VPT Finally, a computational visual distinctness measure was

measure based on the best definition of integral feature for presented that is computed from the image representational

predicting visual target distinctness are presented in Table 1 . model based on visual patterns.It was applied to quantify the
At the bottom of each of the columns is shown the respective visual distinctness of targets in complex natural scenes.fraction of correct classification. The reference rank order is This measure that applies a simple decision rule to the
listed in column 2. distances between segregated visual patterns, was shown

The target distinctness values and the resulting rank order to correlate strongly with visual distinctness of targets in a

computed by the root mean square error (RMSE) metric are dataset, as estimated by human observers.
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APPENDIX the smallest significant scale. still describes the increments in

Let d/" be the second derivative of d, computed as: d, due to inter-cluster differences, while removing spurious
increments due to intra-clustcr differences.

di 2

with

G5 (I) exp{i2 }
and where di is convolved with the second derivative of the
Gaussian at scale s, noted as ,(1 to both smooth and
differentiate the function. '"

The zero crossings of ci" correspond to positions at which the
dissimilarity d, undergoes a significant increment in its value.
To locate the zero crossings marking a rise in d, due to
inter-cluster differences, the unwanted detail from intra-cluster
differences must be removed by smoothing. The question is:
how much smoothing should be performed? The derivative


